Utilization of alkyne bioconjugations to modulate protein function

Johnathan C. Maza, Christina A. Howard, Megha A. Vipani, Christopher R. Travis, Douglas D. Young

Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187, USA

Abstract

The ability to introduce or modify protein function has widespread application to multiple scientific disciplines. The introduction of unique unnatural amino acids represents an excellent mechanism to incorporate new functionality; however, this approach is limited by ability of the translational machinery to recognize the chemical moiety. To overcome this potential limitation, we aimed to exploit the functionality of existing unnatural amino acids to perform bioorthogonal reactions to introduce the desired protein modification, altering its function. Specifically, via the introduction of a terminal alkyne containing unnatural amino acid, we demonstrated chemically programmable protein modification through the Glaser-Hay coupling to other terminal alkynes, altering the function of a protein. In a proof-of-concept experiment, this approach has been utilized to modify the fluorescence spectrum of green fluorescent protein.

Keywords:
Bioconjugations
Green fluorescent protein
Glaser-Hay reaction
Unnatural amino acids

Protein engineering is a powerful tool for the development of new therapeutics, catalysts, and biosensors. While many advances in the field have been made, designing novel protein functionality is still a challenge, as it requires an intricate understanding of the subtle interplay between protein structure and function. Current engineering techniques often focus on using selections and screens to optimize or enhance existing protein functionality. While this method has proved useful for optimizing existing function, generating new function where it does not exist is still a hurdle.

Unnatural amino acids (UAAs) represent a unique means to introduce new chemical functionality into proteins. Using the Schultz methodology, UAAs are co-translationally incorporated into a protein's primary sequence, typically in response to a stop codon introduced at the DNA level. As such, UAA mutagenesis allows for the site-specific incorporation of a novel chemical functionality into proteins, which can then be exploited towards the development of novel protein activities. By inserting new chemical reactivity into a protein, UAAs allow for a condensed and facile workflow for engineering new protein functionality without the need to perform tedious and lengthy selections and screens. For example, recent reports from our laboratory and others have site-specifically incorporated fluorescent UAAs into proteins, yielding novel fluorescent properties in a protein in a direct and highly controlled fashion.

While UAAs have allowed for the development of unique protein function, the evolved proteins are often limited to a single new function, depending on the UAA incorporated. In addition, the functionality is limited to the UAA itself, which suffers from constraints, such as the requisite for an aminoacyl tRNA synthetase capable of recognizing the UAA, the synthetic accessibility of the UAA, and the size of the UAA which may preclude its uptake by a cell.

Bioorthogonal chemistry, which employs reactions that proceed to completion under physiological conditions (pH ~ 7, 37 °C), offers a unique mechanism to add new chemical functionality to proteins. Indeed, a variety of reactions have been developed that can add novel chemistry to living systems. In particular, the cycloaddition between azides and alkynes that is either copper(I) mediated or strain promoted has become a widespread technique to introduce unique chemistry to proteins. More recently, our group has developed a bioorthogonal variant of the Glaser-Hay reaction, which brings together two terminal alkynes to form a diyne in the presence of copper(I) under physiological conditions. The resulting stable diyne linkage has a well-defined linear geometry, and due to the abundance of commercially available terminal alkynes, a variety of chemical moieties can be reacted.

© 2016 Elsevier Ltd. All rights reserved.
onto a protein using this technique. As such, we sought to utilize
the power of this new chemistry to generate new and different
protein function dependent upon the alkyne reaction partner and
not the UAA alone.

Specifically, we designed a proof-of-concept experiment to alter
the function of green fluorescent protein (GFP) via reaction of dif-
erent terminal alkynes onto the GFP chromophore. GFP is a
27 kDa protein isolated from *Aequorea victoria* with photochemical
properties arising from an internal chromophore composed of
Ser65-Tyr66-Gly67.27–29 New chemical properties afforded by
UAA introduction in place of Tyr66 have already been documented
to alter GFP’s fluorescence profile.30 All UAAAs incorporated were
found to blue-shift the fluorescence profile of GFP, with more highly
conjugated UAAs exhibiting a greater degree of spectral shifting.
Based on these results, the ability to modulate the conjugation
of GFP’s fluorophore using UAA mutagenesis is apparent, and repre-
sents a convenient means to rationally design new protein func-
tion.31 However, this mutagenesis approach is limited by the size
and complexity of the UAA. An alternative approach involves
exploiting the chemical functionality in pre-existing UAAs to serve
as functional handles for bioorthogonal reactions, acting as a “tem-
plate” for the chemical derivatization of new protein function.

This chemically templated protein function could be achieved via
the genetic incorporation of *p*-propargyloxyphenyalanine
(*pPrF*, 1) or *p*-ethylphenylalanine (*pEtF*, 2) into residue 66 of
GFP (Fig. 1).32 This provides a terminal alkyne handle for reaction
with different chemical moieties via the bioorthogonal Glaser-
Hay reaction. The resulting diyne linkage is highly conjugated,
and a prime candidate to introduce new photochemical properties
into GFP’s fluorophore without the need to evolve a new aaRS or
express multiple versions of the protein containing different UAAs.
Moreover, the *pEtF* (2) is directly conjugated with the aromatic
ring of the UAA, allowing for a comparison of the conjugation
between the different UAAs. We hypothesized that the altered con-
jugation and chemical properties around the fluorophore would
lead to new photophysical properties, demonstrating the utility
of a chemically programmable protein engineering strategy. Herein
we report our findings on utilizing the Glaser-Hay reaction on
GFP’s fluorophore to alter its fluorescent properties.

In order to obtain protein possessing an alkyne moiety, a
GFP plasmid harboring a TAG mutation at position 66 was co-transformed with the polyspecific pCNF-aaRS/tRNA pair.33

Conveniently, this aaRS is capable of recognizing both 1 and 2 for
expression of an alkyne-containing GFP.25 As the alkyln UAA
is incorporated into position 66 in GFP’s fluorophore, the extended
conjugation afforded by the UAA alters the spectral properties
of GFP. To assess that *pPrF*-GFP*TAG66* was successfully produced, spec-
tra for the GFP-variant were compared to the wild type. These
spectra exhibited blue-shifts, in agreement with the literature
precedent, in the *pPrF* variant relative to the wild type. Incorpora-
tion was also confirmed by SDS-PAGE analysis of protein expres-
sion in the presence and absence of the UAA (see Supplementary
material). A similar expression was performed using the pCNF
aaRS/tRNA pair and *pEtF* to produce a separate GFP mutant with
a bioconjugation handle. Conveniently, due to the modularity of
this approach, only a single protein expression is necessary and
all functional modification can be achieved synthetically. This is
in contrast to previous experiments, which required an individual
protein expression for each GFP in order to modify protein
function.

With a *pPrF*-GFP*TAG66* and *pEtF*-GFP*TAG66* in hand, we then
sought to employ our previously reported bioorthogonal Glaser-
Hay reaction to install new and varied chemical functionality into
the chromophore of GFP (Fig. 2). To investigate, we performed
bioorthogonal Glaser-Hay reactions on the chromophore’s alkyne
handle to couple terminal alkyne-bearing aliphatic and aromatic
compounds with different chemical functionalities. Glaser-Hay
reactions were performed by using a working concentration of
500 mM of Cul and TMEDA in the presence of alkyne-UAA bearing
GFP*TAG66* and the cognate alkyln partner (Scheme 1). Reactions
proceeded for 4 h at 4 °C and then were purified via centrifugation
with a molecular weight cut-off column. The protein was placed in
phosphate-buffered saline solution (pH ~ 7.2) for analysis using
fluorescence spectroscopy. Gratifyingly, our initial attempts to
couple the terminal alkynes to the fluorophore were successful.
Furthermore, the different characteristics of the installed alkyne
moieties successfully shifted the fluorescence profile away from

![Fig. 1. Modification of GFP function via UAA mutagenesis. (A) GFP β-barrel (green)
with the chromophore (red) and chromophore structure. (B) Unnatural amino acids
employed as bioconjugation handles.](image1)

![Fig. 2. Structures of the fluorophores generated when performing a Glaser-Hay
reaction with the two UAAAs. (A) Product from the coupling of a terminal alkyne to a
GFP mutant containing 1. (B) Product from the coupling of a terminal alkyne to a
GFP mutant containing 2.](image2)
the parental alkynyl-GFP\textsubscript{TAG66} spectra, each in a unique way. Control reactions in the presence of the alkyn but the absence of either the CuI/TMEDA or the soluble alkyn afforded no spectral shifts, confirming that the protein modification is indeed due to the coupling reaction. While it might be expected that the requisite for the reaction to occur within the β-barrel of GFP may hinder this reaction from occurring, we hypothesize that the hydrophobic nature of the interior of GFP actually aided in the hydrophobic alkyn localization, thereby facilitating the reaction by increasing the effective concentration. Additionally, SDS-PAGE analysis with Coomassie revealed that the Glaser-Hay reaction only minimally altered protein concentration suggesting only minimal protein degradation (see Supplementary material).

We found that our initial Glaser-Hay reactions on pPrF-GFP\textsubscript{TAG66} had different effects on the fluorescent profile of GFP (Fig. 3A). Reacting 1-hexyne (3) on the chromophore caused a general broadening and quasi-red shift of the fluorescent spectra. Reacting propargyl amine (4) on the chromophore caused a slight band broadening, as well as potential increase in fluorescence intensity, perhaps due to the increased polarity of the introduced amine group. Interestingly, coupling with an aromatic alkyn resulted in

![Scheme 1. Glaser-Hay bioconjugations to modify the GFP fluorophore.](image)

Fig. 3. Fluorescent profile obtained after reacting various alkyn containing partners with pPrF or pEtF-containing GFP\textsubscript{TAG66}. (A) Fluorescent spectra for Glaser-Hay modified pPrF-GFP chromophore. (B) Fluorescent spectra for Glaser-Hay modified pEtF-GFP chromophore.
a dramatic red-shift of the fluorescence to above that of wild-type GFP. Both ethynylalanine (5) and ethynylanine (6), resulted in excitation spectra maxima above 540 nm, dramatically altering the fluorescence of GFP.

We next sought to explore the effects of reacting terminal alkynes in direct conjugation with the aromatic ring of residue 66. This was feasible with the GFP mutant harboring 2. Interestingly, this strategy resulted in an even greater blue shift of the pEtf-GFP pTAG66 compared to both the pFrF and wild-type variants, likely due to the increased conjugation of the direct attachment of that terminal alkyne on the phenyl ring (see Supplementary material). As a result of this shift, a different excitation wavelength was necessary, as 395 nm was found to no longer excite the pEtf-containing chromophore. Based on absorption experiments, we selected 280 nm as the wavelength to excite the pEtf-GFP pTAG66 and all its Glaser-Hay derivatives. In the same fashion as the pFrF, the bioorthogonal Glaser-Hay was performed on pEtf-GFP pTAG66 using the same reaction partners. Once again, 3 was found to broaden the fluorescence spectra. Interestingly, 4 had a drastic red-shift relative to the pEtf parent chromophore. We believe this helps validate our initial speculation that the polarity of the amine has a drastic impact on the fluorescent properties of the chromophore, as in this instance the whole system is in direct conjugation. Interestingly, when employing the aromatic alkynes in the fluorophore modulation, a less dramatic effect was observed than with the pFrF mutants. Reaction with 5 only slightly red-shifted the spectra; however, 6 had a more significant impact both on the intensity and the red-shifting of the fluorophore. Additionally, attempts to repeat the experiments using the bromo-alkyne derivative of 2 under Cadiot-Chodkiewicz coupling conditions resulted in the identical spectra, but were performed under more mild reaction conditions. These results were expected as the final products of both the Glaser-Hay or Cadiot-Chodkiewicz reactions are identical. This represents a viable alternative reaction to these protein modification approaches.

In conclusion, we have extended our work on the biological Glaser-Hay to utilize the bioorthogonal chemistry to modulate protein function. Using two previously reported alkyne-containing UAs within the chromophore of GFP (position 66), we have successfully performed the Glaser-Hay reaction on the chromophore of GFP. The resulting diyne linkage alters the fluorescence profile of GFP depending on the moiety attached to the terminal alkyne. Our future work seeks to extend the reaction to additional aromatic containing alkynes, which we hope will have a greater impact on GFP fluorescence due to the increased conjugation found in aromatic systems. Our findings highlight the potential of bioorthodox chemistry, particularly diyne-forming chemistries, to modulate protein function without the need for tedious selections and screens.

Acknowledgments

The authors would like to thank the College of William & Mary and the National Institute of General Medical Sciences of the NIH (R15GM113203). We would also like to acknowledge Dr. Peter Schultz for providing the pEvol plasmids utilized in the research.

A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmcl.2016.11.041.

References