Student Publications

Quick Links
Last Names A-E
Last Names F-K
Last Names L-P
Last Names Q-T
Last Names U-Z

Previous Student Publications


Victoria A. Assimon (Gestwicki Lab)

  1. Smith, M. C., Scaglione, K. M., Assimon, V. A., Patury, S., Thompson, A. D., Dickey, C. A., Southworth, D. R., Paulson, H. L., Gestwicki, J. E., Zuiderweg, E. R. P. 2013, Biochemistry. 52(32):5354-5364.
  2. Assimon, V. A., Gillies, A. T., Rauch, J. N., Gestwicki, J. E.  “Hsp70 Protein Complexes as Drug Targets.” 2012, Curr Pharm Design. 19(3):404-417.

James Carolan (Mapp Lab)

  1. Evans, C. G., Smith, M. C., Carolan, J.P., Gestwicki, J. E. “Improved synthesis of 15-deoxyspergualin analogs using the Ugi multicomponent reaction” Bioorgan. Med. Chem. Lett. 2011, 21, 2587.
  2. Olson, M.E.; Carolan, J.P.; Chiodo, M. V.; Lazzara, P. R.; Mohan, R. S. "Iron(III) Tosylate Catalyzed Deprotection of Aromatic Acetals in Water." Tetrahedron Lett. 2010, 51, 3969.
  3. Bothwell, J.M., Angeles, V.V., Carolan, J.P., Olson, M.E. and Mohan, R.S., "A mild and chemoselective method for the deprotection of tert-butyldimethylsilyl (TBDMS) ethers using iron(III) tosylate as a catalyst", Tetrahedron Letters, 2010, 51, 1056. [Full Text]

Laura Cesa (Mapp Lab)

  1. Cesa LC*, Patury S*, Komiyama T, Ahmad A, Zuiderweg, ER, Gestwicki JE (2013). Inhibitors of protein-protein interactions identified by high-throughput screening of multi-protein complexes. ACS Chem Biol. 8(9): 1988-1997. [PDF]
  2. Majmudar, C. Y.; Højfeldt, J. W.; Arevang, C. J.; Pomerantz, W. C.; Gagnon, J. K.; Schultz, P. J.; Cesa, L. C.; Doss, C. H.; Rowe, S. P.; Vásquez, V.; Tamayo-Castillo, G.; Cierpicki, T.; Brooks, C. L. 3rd; Sherman, D. H.; Mapp, A. K. (2012). Sekikaic acid and lobaric acid target a dynamic interface of the coactivator CBP/p300. Angew. Chem. Int. Ed. Engl. 51(45): 11258-11262. [PDF]
  3. Cesa LC, Higgins CA, Sando SR, Kuo DW, Levandoski MM (2012). Specificity Determinants of Allosteric Modulation in the Neuronal Nicotinic Acetylcholine Receptor: A Fine Line between Inhibition and Potentiation. Molecular Pharmacology 81(2): 239-249. [PDF]

*authors contributed equally

Osvaldo Cruz (Sunahara Lab)

  1. Bifunctional Ligands Allow Deliberate Extrinsic Reprogramming of the Glucocorticoid Receptor. Højfeldt JW, Cruz-Rodríguez O, Imaeda Y, Van Dyke AR, Carolan JP, Mapp AK, Iñiguez-Lluhí JA. Mol Endocrinol. 2014 Jan 1:me20131343. [Epub ahead of print]
  2. The in vivo role of androgen receptor SUMOylation as revealed by androgen insensitivity syndrome and prostate cancer mutations targeting the proline/glycine residues of synergy control motifs.
    Mukherjee S, Cruz-Rodríguez O, Bolton E, Iñiguez-Lluhí JA.
    J Biol Chem. 2012 Sep 7;287(37):31195-206. doi: 10.1074/jbc.M112.395210. Epub 2012 Jul 24.
  3. Small ubiquitin-like modifier (SUMO) modification mediates function of the inhibitory domains of developmental regulators FOXC1 and FOXC2. Danciu TE, Chupreta S, Cruz O, Fox JE, Whitman M, Iñiguez-Lluhí JA. J Biol Chem. 2012 May 25;287(22):18318-29. doi: 10.1074/jbc.M112.339424. Epub 2012 Apr 5.

Matthew DeMars (Sherman Lab)

  1. Zhang, K.; Shafer, B. M.; Demars II, M. D.; Stern, H. A.; Fasan, R. Controlled oxidation of remote sp3 C-H bonds in artemisinin via P450 catalysts with fine-tuned regio- and stereoselectivity. J. Am. Chem. Soc. 2012, 134, 18695. [PDF]



Stephanie Gates (Southworth Lab)

  1. Voth W, Schick M, Gates S, Li S, Vilardi F, Gostimskaya I, Southworth DR, Schwappach B, Jakob U (2014) The protein targeting factor Get3 functions as ATP-independent chaperone under oxidative stress conditions. Mol Cell 56: 116-127.

Felicia Gray (Cierpicki/Grembecka Labs)

  1. P. Mitra, D. Shultis, J.R Brender, J. Czajka, D. Marsh, F.L.V Gray, T. Cierpicki, Y. Zhang. “An evolution-based approach to de novo protein design and case study on Mycobacterium Tuberculosis.” PLoS Computational Biology, in press (2013).
  2. Gray FLV, Murai MJ, Grembecka J, Cierpicki T. "Detection of disordered regions in globular proteins using 13C-detected NMR" Protein Science 2012, 21, 1954-60. [Full Text]

Carrie Johnson (Iniguez Lab)

  1. Johnson, A.R., Johnson, C.M., Stoll, D.R., Vitha, M.F.  Identifying orthogonal and similar reversed phase liquid chromatography stationary phases using the system selectivity cube and the hydrophobic subtraction model.  J Chromatogr. A 2012, 1249, 62-82. [Full Text]



Daniel Lorenz (Garner Lab)

  1. Lockshon D, Olsen CP, Brett CL, Chertov A, Merz AJ, Lorenz DA, Van Gilst MR, Kennedy BK. (2012) Rho Signaling Participates in Membrane Fluidity Homeostasis. PLoS ONE 7(10): e45049. doi:10.1371/journal.pone.0045049
  2. Lorenz, D. A., Song, J. M., Garner, A. L., "High-Throughput Platform Assay Technology for the Discovery of pre-microRNA-Selective Small Molecule Probes." Bioconjugate Chemistry, 2014. [PDF]

Paul Lund (Walter Lab)

  1. Lund, P., Hunt, R., Gottesman, M.M. and Kimchi-Sarfaty, C., "Pseudovirions as Vehicles for the Delivery of siRNA ", Pharmaceutical Research, 2010, 27, 400. [Full Text]
  2. Amit, P., Watson, R.M., Lund, P., Xing, Y., Burke, K., He, Y., Borguet, E., Achim, C. and Waldeck, D.H., "Charge Transfer through Single-Stranded Peptide Nucleic Acid Composed of Thymine Nucleotides", J. Phy. Chem. C, 2008, 112, 7233. [Full Text]

Tad Ogorzalek (Marsh Lab)

  1. Gramer, M.J., and Ogorzalek, T, "A semi-empirical mathematical model useful for describing the relationship between Carbon Dioxide, pH, Lactate, and base in a bicarbonate-buffered cell-culture process", Biotechnol. Appl. Biochem., 2007, 47, 197-204. [Full Text]

Carol Ann Pitcairn (Fierke Lab)

  1. Olson DE, Udeshi ND, Wolfson NA, Pitcairn CA, Sullivan ED, Jaffe JD, Svinkina T, Natoli T, Lu X, Paulk J, McCarren P, Wagner FF, Barker D, Howe E, Lazzaro F, Gale JP, Zhang YL, Subramanian A, Fierke CA, Carr SA, Holson EB. An Unbiased Approach To Identify Endogenous Substrates of “Histone” Deacetylase 8. ACS Chem Biol. 2014, [Epub ahed of print.]
  2. Wolfson, N. A.; Pitcairn, C. A.; Sullivan, E. D.; Joseph, C. G.; Fierke, C. A., An enzyme-coupled assay measuring acetate production for profiling histone deacetylase specificity. Analytical Biochemistry 2014, 456 (0), 61-69.
  3. Wolfson, N. A.; Pitcairn, C. A.; Fierke, C. A., HDAC8 substrates: Histones and beyond. Biopolymers. 2013, 99 (2), 112-126.

Rachel Pricer (Mapp Lab)

  1. Pricer, R.E., Houghton, J.L., Green, K.D., Mayhoub, A.S., &
    Garneau-Tsodikova, S.  (2012). Biochemical and structural analysis of aminoglycoside acetyltransferase Eis from Anabaena variabilis. Mol. BioSyst., 8, 3305-3313.
  2. Houghton, J.L., Green, K.D., Pricer, R.E., Mayhoub, A.S., &
    Garneau-Tsodikova, S.  (2013). Unexpected N-acetylation of capreomycin by mycobacterial Eis enzymes. J. Antimicrob. Chemother., 68, 800-805.
  3. Lancia, J.K., Nwokoye, A., Dugan, A., Joiner, C., Pricer, R.,
    & Mapp, A.K. (2013). Sequence context and crosslinking mechanism affect the efficiency of in vivo capture of a protein-protein interaction. Biopolymers, Accepted.
  4. Rashidian, M., Song, J. M., Pricer, R. E., Distefano, M. D., "Chemoenzymatic Reversible Immobilization and Labeling of Proteins without Prior Purification." Journal of the American Chemical Society, 2012.



James Song (Garner Lab)

  1. Rashidian, M., Song, J. M., Pricer, R. E., Distefano, M. D., "Chemoenzymatic Reversible Immobilization and Labeling of Proteins without Prior Purification." Journal of the American Chemical Society, 2012. [PDF]
  2. Lorenz, D. A., Song, J. M., Garner, A. L., "High-Throughput Platform Assay Technology for the Discovery of pre-microRNA-Selective Small Molecule Probes." Bioconjugate Chemistry, 2014. [PDF]

Eric Sullivan (Fierke Lab)

  1. Kincaid, V. A., E. D. Sullivan, et al. (2011). "Structure and Catalytic Mechanism of Nicotinate (Vitamin B3) Degradative Enzyme Maleamate Amidohydrolase from Bordetella bronchiseptica RB50." Biochemistry 51(1): 545-554.

Hong Tran (Sherman Lab)

  1. Li, S., Anand, K., Tran, H., Yu, F., Finefield, J. M., Sunderhaus, J. D., Timothy, J., Tsukamoto, S., Williams, R. M., Sherman, D. H., Arbor, A., and Collins, F. (2012) Comparative analysis of the biosynthetic systems for fungal bicyclo[2.2.2]diazaoctane indole alkaloids: the (+)/(-)-notoamide, paraherquamide and malbrancheamide pathways, MedChemComm 1-23.



Adam Yokom (Southworth Lab)

  1. Yokom AL, Morishima Y, Lau M, Su M, Glukhova A, Osawa Y, Southworth DR, Architecture of the Nitric Oxide Synthase Holoenzyme Reveals Large Conformational Changes and a Calmodulin-Driven Release of the FMN Domain. J Biol Chem. 2014 April 15.